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The effects of gravity modulation on the 
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The stability of a horizontal layer of fluid heated from above or below is ex- 
amined for the case of a time-dependent buoyancy force which is generated by 
shaking the fluid layer, thus causing a sinusoidal modulation of the gravitational 
field. A linearized stability analysis is performed to show that gravity modulation 
can significantly affect the stability limits of the system. In this analysis, much 
emphasis is placed on qualitative results obtained by an approximate solution, 
which permits a rather complete stability analysis. A useful mechanical analogy 
is developed by considering the effects of gravity modulation on a simple pendu- 
lum. Finally, some effects of finite amplitude flows are considered and discussed. 

1. Introduction 
It is well known that if a quiescent fluid layer is heated uniformly from below, 

the adverse density gradient becomes unstable and fluid motion ensues when 
a critical heating rate, measured in terms of the Rayleigh number, is exceeded. 
A comprehensive review of this stability problem is given in Chandrasekhar 
(1961). If, however, the heating rate (or some other influencing parameter) is 
time-dependent, the classical stability analysis no longer applies. For example, if 
one or both of the bounding surface temperatures is sinusoidally varied about a 
steady heating rate, it has been shown (Venezian 1969) that the stability limit of 
the system is changed; temperature modulation may be a stabilizing or a de- 
stabilizing influence. A somewhat related system, the flow between concentric, 
rotating cylinders (Taylor instability), has been investigated experimentally by 
Donnelly (1964) and analytically by Meister & Munzner (1966) when the inner 
cylinder is sinusoidally modulated. The modulation was shown to be a stabilizing 
influence over the parameter range studied. Also, Rosenblat (1968) found that 
modulation could have a stabilizing or destabilizing effect on a class of time- 
periodic, inviscid flows. 

In this paper we examine the stability of a heated fluid layer in which the 
gravitational field consists of a constant part plus a sinusoidally varying part; 
this modulation of gravity may be realized by vertically oscillating a fluid layer 
in a constant gravitational field. The effect of gravity modulation on the existence 
of standing waves on the free surface of a liquid in a vessel was analyzed by Ben- 
jamin & Ursell (1954); their analysis, like ours, was centred around the stability 
characteristics of Mathieu’s equation. An approximate linear stability analysis 
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is performed in order to assess the qualitative effects of gravity modulation, 
considering both heating from below and the normally uninteresting case of 
heating from above. A simple pendulum analogy, the stability characteristics 
of which are known, is shown to apply to the fluid layer system. The effect of the 
modulation on the flow pattern and heat transfer rate is then considered by re- 
taining the non-linear terms in the governing equations. These finite amplitude 
effects are analyzed only for two-dimensional roll cells of a single wave-number. 

2. Development of equations 
The system to be considered consists of a thin layer of Newtonian fluid heated 

uniformly and steadily from above, or below; the fluid is confined between two 
large, rigid horizontal plates which are sinusoidally oscillated in the vertical 
direction (parallel to the gravitational field). The usual Boussinesq approxi- 
mations (Chandrasekhar) are invoked, and a linear dependence of density 
upon temperature is assumed. The initial quiescent state whose stability is 
questionable is characterized by a linear temperature and parabolic pressure 
distribution between the plates at  any instant in time. 

It is convenient to study the behaviour of the system from a Cartesian refer- 
ence frame fixed on the top plate (the x-direction is vertically down), such that the 
plate oscillations are manifest by simply a sinusoidal modulation of the gravita- 
tional force. The dimensionless equations governing such a system are 

where 

( g - V 2 )  8 = - JIRI w-u.88, 

The dimensional transformation is as follows: time is in units of h2/K; length 
is in units of the layer depth h; temperature is in units of the overall temperature 
difference AT, divided by the square root of the Rayleigh number 

R = yATgh3/~v;  

velocity is in units of K/h. Here y is the volumetric coefficient of thermal 
expansion, g is the acceleration due to gravity, K is the thermal diffusity, and 
v is the kinematic viscosity. The Prandtl number is Pr = V / K ,  u is the velocity, 
w is the vertical component of velocity, and 8 is the temperature deviation 
from the linear profile; the actual temperature is given by T = AT(z+B/J(RI).  
Finally, o is the (dimensionless) frequency of the oscillation and E is a measure of 
the amplitude of oscillation in ‘units of g’; i.e. E is the dimensionless accelera- 
tion and is given by B = &Fro2, where Fr = ~ ~ / g h ~  is a sort of Froude number 
based on the characteristic velocity K/h. The non-linear terms are u . VB (convec- 
tive energy transport) and w (related to the convective acceleration u.Vu 
in the Navier-Stokes equation) ; the explicit form of N need not be presented 
since it will vanish identically in the simplified treatment considered in this work. 
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Also, in (2) the minus sign applies to a layer heated from below (the normal scheme 
with AT > 0), while the plus sign applies to a layer heated from above, a normally 
stable arrangement, with AT < 0. 

The boundary conditions in the vertical direction are those for rigid, con- 
ducting walls : 

(3) 0 = = awlax = o a t  2 = 0, 1. 

No boundary conditions are imposed in the lateral directions, and initial con- 
ditions are unimportant, since we will be interested in the long time behaviour 
of systems with large lateral dimensions. 

The solution to (1) and (2) will be assumed to consist of two-dimensional roll 
cells of a single wave-number a;  the size of these periodic cells is h = %/a. The 
solution will be obtained approximately using Galerkin’s method (Pinlayson & 
Scriven 1966) with time-dependent amplitude coefficients. The Nth order ap- 
proximate solutions are represented by 

N 
w = cosaxsinnx K(t)sin(Zi-l)nz, 

i=l 
(4) 

N -  N 
8 = C T,(t) sin 2inx + cos ax C T,(t) sin (2i - 1) n-x. (5) 

i= 1 i= 1 

The roll cell is described by the C O S ~ X  term. The first part of the temperature 
representation describes the distortion of the linear conduction profile caused by 
convection. The factor of 2 in the sine functions assures the same heat flow at 
both top and bottom surfaces. The second part of the temperature representation, 
sometimes called the perturbation temperature, is dependent on lateral position 
and has zero horizontal mean. The Nusselt number is the ratio of the heat trans- 
fer with convection present to that with no flow and is given by 

where the bar indicates a horizontal average. Prom (5) 

277 N 
NU = I+- iT,(t). 

41RI i=l 

Pinally, it is noteworthy that only the even-symmetry class (even about the mid- 
plane, x = +) of sine functions has been employed for the velocity and tempera- 
ture perturbations. The even and odd symmetry classes are not coupled for this 
system and can thus be examined independently. The even mode is associated 
with the lowest Rayleigh number for which the system is unstable and the solu- 
tions describe a single cell between the two surfaces. Even at very large Rayleigh 
numbers, wherein a solution with two cells in the vertical direction is also possible 
(the odd solution), it is expected that the even solution will dominate and only one 
cell would be observed. In  fact, all of the sine functions were included in certain 
representative cases and the above behaviour was substantiated. The equations 

50 F L M  40 
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for the amplitude coefficients which are generated by Galerkin's method are 
(the dot represents a time derivative) : 

N N N  

j = l  m = l  n = l  
Pi = - ( i2n2+c1.2)  q+ 2JlRl C, B,,Y(t) - 2 c AimnVm(t) Tn(t), (9) 

N 

j=1 
and {Cii$'j(t) + Pr [Dij. F ( t )  f a2,/1RI (1 + 6 sin w t )  . Btj q(t)]) = 0, 

for i = 1 ,2 ,  ..., N (10) 

(the + sign in (10) is for R > 0). The coefficient matrices are defined in the ap- 
pendix. 

Note that the only non-linear terms present for the single wave-number 
analysis result from the term u . VB in (1); there are no non-zero contributions 
from the term represented by w in ( 2 ) .  In  effect, then, the only non-linear inter- 
actions allowed are those involving the horizontally averaged temperature field. 
If harmonics of cos ax were employed, there would result additional non-linear 
interactions in the energy equation, and the term R in ( 2 )  would contribute non- 
zero terms. Since this work is in the nature of an exploratory effort, the more 
approximate description of the roll cells seems justified. Further, it is expected 
that the higher harmonics of cos ax will generally be unimportant when the Ray- 
leigh number is not far from its critical value; the validity of this assumption 
may be surmised from the results of Veronis (1966) for steady heating with no 
modulation. Future plans, however, do include examining the effects of higher 
harmonics of cosm; these will be published separately (Gresho 1969). 

Upon inverting the Cii matrix, (10) is converted to the form (8) and (9); the 
entire set of 3N first-order equations can then be integrated simultaneously (e.g. 
via a fourth-order Runge-Kutta technique). 

3. Linearized approximation using one trial function : comparison 
with a simple pendulum 

Although the non-linear terms in (8) and (9) are required if finite amplitude 
effects are significant, they may be dropped if one is interested only in the limits 
of stability as described by the linearized equations; for such a stability analysis, 
(8) may be omitted completely and the last term in (9) may be neglected. Further, 
a reasonable first approximation may be realized by using only one trial function 
( N  = 1). In this case (9) and (10) become 

q = - (++ a2) T,(t) + 2JlRl B,,V,(t), (11) 

Eliminating &( t )  between (11) and (12) gives (dropping subscripts) 

T + 2pP- f ( p )  Pr [(R- R,) + E Rsin wt] T = 0, 113) 
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256 P f ( / 3 )  = 2a’B’/C = __ __ 
9n2 4+3/3’ 

and - D(n2 + a’) =- 9n6 (1 +/3) (16 + 8,8+ 3/32) 
P 

R,=- 
2a B2 256 

R, is the normal (‘no shake’) critical Rayleigh number; for these trial functions, 
R, = 1824.8 at  the critical wave-number (a = 3.117) whereas the exact result 
for this system is 1707.8 (Chandrasekhar), thus providing some measure of the 
error to be expected using only one trial function. Equation (13) is valid for both 
positive and negative Rayleigh numbers. 

At this point we introduce a mechanical analogue to the fluid layer system; 
viz. a simple pendulum with viscous damping whose pivot point is sinusoidally 
oscillated in the vertical direction. The equation of motion for such a pendulum 
of length I is 

6 
61+2&~,8& w;+2Cw w-coswt-w2-sinwt e = 0. 

This equation is valid for planar motion at small angles 0 from the vertical. 
The vertical motion of the pivot is given by asin wt. Also, w, = , / ( g / l )  is the un- 
damped natural frequency andc is the damping ratio. The plus sign applies to the 
normal, hanging pendulum and the negative sign to the statically unstable, in- 
verted pendulum. The evident analogy is thus: the temperature of an oscillating 
fluid layer may be likened to the motion of a simple pendulum wherein exist 
two quite different modes for each system (a fluid heated from below (R > 0) is 
‘top heavy’, as is an inverted pendulum); while a fluid heated from above 
(R < 0 )  is statically stable, as is a hanging pendulum. Since it is well known 
(Den Hartog 1940; Stoker 1950; Cunningham 1958) that vertical oscillations of 
the pivot point can (i) destabilize a statically stable, hanging pendulum and 
(ii) stabilize a statically unstable inverted pendulum?, it seems quite reasonable 
to expect gravity modulation to have a similar effect on a heated fluid layer. 
Although this analogy was drawn using a one-term approximation to w and 8, 
the results so obtained were always found to be qualitatively valid for larger 
values of N .  Further support for the validity may be obtained by considering 
the (mathematically popular) so-called ‘ free-free ’ boundary conditions on w, 
Although such an experiment would be twice as difficult (for E > 1) as the ‘no 
shake ’ system in the laboratory, it  nevertheless relates to some of the principal 
features of the physically realizable system while being much simpler to analyze. 

f The physical explanation of these phenomena is based on energy considerations. A 
hanging pendulum is destabilized by oscillation if the phase angle between the input 
and the response is such as t o  add a net amount of energy to the system. This energy ad- 
dition is obtained, in part, by performing work against the centrifugal force (mv2/r) during 
the part of the cycle when v2 is large and by removing energy through the same force when 
v 2  is small. Similar reasoning applies t o  the inverted pendulum, which must have a net 
amount of energy removed if it is to be stabilized. 

1 ” (14) ( 

50-2 
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Specifically, with a linear conduction temperature profile, a free-free system has 
an exact solution of the form w = V ( t )  cosaxsinm and 8 = T ( t )  cosaxsinm (in 
the linearized approximation). This system leads directly to equations similar to 
(11), (12 ) ,  and (13), all of which would be ‘exact’ up to this point. 

Thus the stability predictions to be obtained using one trial function may be 
taken to be qualitatively correct but quantitatively approximate; e.g. with re- 
spect to (1)  the location of a boundary between stable and an unstable solution 
and ( 2 )  the exact value of the critical Rayleigh number and wavc-number at a 
point of marginal stability. 

Both (13) and (14) can be cast into the canonical form of the Mathicu equation, 
which is (McLachlan 1964) 

X + ( a + 2 q c o s ~ ~ ) ~  = 0. (15) 

The solution to this equation is of the form X = F(7)  eF7 where F(7)  is a periodic 
function with period r~ or 271 and p is the characteristic, or Floquet, exponent, 
which is in general a complex function of a and q. The special case p = 0 results 
in a class of solutions called Mathieu functions; for each Mathicu function there is 
a unique relationship between a and q (one of which may be considered as an 
eigenvaluc of (15) for a given value of the other). The regions in the a-q plane 
separated by the Mathieu functions are alternately stable and unstable 

(Re@) < 0 and > 0,  respectively): 

with the boundaries being neutrally stable. There are solutions to (15) both for 
a > 0 and a < 0; also, q may be replaced by - q with no effect on the solutions. 

After changing variables, the Mathieu parameters a and q are related to those 
in (13) and (14) asfollows: For the pendulum, &q = 6/Z and (i) 2/Ja = w/wo( 1 -g2)$ 
for the underdamped (( < 1) hanging pendulum, (ii) Z / J  - a = w/wo(cz - 1)s for 
the overdamped (6 > 1) hanging pendulum, and (iii) 2 /  J - a  = w/wo( 1 +F)* for 
the inverted pendulum. For the fluid layer the corresponding relationships are 
&q = f(P) Pr Rs/02 = f ( P )  P r  R6Fr = f ( P ) .  6 .  ( y A T ) ;  this implies that the roll cell 
behaves as a pendulum with an effective (dimensionless) length of l/f(P) yAT ,  a 
‘ quite long ’ pendulum, since yAT = Ap/p is usually much less than unity. Also, 
2/Ja = # / ( . f ( p ) P r ( ~ N - R ) ) ~  for R < RN and 2 /J -a  = ~ / ( f ( p ) P r ( R - R ~ ) ) s  for 
R > RN, where RN is termed the negative critical Rayleigh number (R, < 0) 
and is a function of Pr and p; for the trial functions employed here R, is given by 

where 

and R, is the previously defined critical Rayleigh number with no gravity oscilla- 
tion. The negative critical Rayleigh number defines the dividing line between 
monotonic decay (real growth rate) and damped oscillatory decay (complex 
growth rate) for the ‘no-shake’ system; for R, < R < R,, the decay is monotonic 
while for R < RN the decay is damped oscillatory. This behaviour also has a 
direct analogue with the pendulum model: R > 0 corresponds to the inverted 
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pendulum, R, < R < 0 corresponds to the overdamped, hanging pendulum, 
and R < RN corresponds to the underdamped, hanging pendulum. 

The damping terms in (13) and (14) have a stabilizing influence on the solu- 
tions, i .e. the exponential behaviour is no longer given by eFt. For the pendulum, 
the argument of the exponent,ial factor is (&. w/wo - E )  w,t and the stability 

criterion is seen to be < > $,u. w/oo.  Hence the pendulum stability depends on the 
amount of damping present, the frequency ratio w/wo, and the characteristic 
exponent of Mathieu’s equation. In  the stable regions of Mathieu’s equation, p 
is complex with a negative real part; hence in these regions even an undamped 
(6 = 0) pendulum is stable. For the fluid layer, the exponential factor is (ipw - p )  t 
and the stability criterion is I, > ipw. Here, since ,u is a function of a and q and 
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these in turn depend on R, Pr, p, 6 ,  and w ,  the fluid layer stability is seen to de- 
pend, as expected, on these same parameters. 

Although there are limited values of p(a, q)  available (Abramovitz & Stegun 
1964; McLachlan 1064) no comprehensive data could be located. Hence, in order 
readily to assess the stability of this system (in terms of the parameters of interest, 

214. 
FIGURE 3. Stability chart for Mathieu equation: +a plane. 

viz. +q and 2 J f a) ,  the first task was to compute ‘Mathieu stability charts’ for 
both positive and negative values of a. This was done by numerically integrating 
Mathieu’s equation from 0 to n= for many values of a and q, following the method 
outlined in Abramovitz & Stegun. For this purpose, it was found more convenient 
to utilize a modified form of the characteristic exponent, viz. & = pi J 2 a. 
Values of gc us. &q and 2 J a are shown in figure 1 for a < 0 (R > R N )  and in 
figure 2 for a > 0 (R < RN).  I n  each figure, the shaded regions correspond to  
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stable solutions of Mathieu’s equation, while the other regions give unstable 
solutions. The lines of constant [, are seen to appropriately enlarge the stable 
regions owing to damping effects. In  terms of the new parameter &, the stability 
criteria for the fluid layer become: 

(i) for R > RN (use figure 1)  : stable for R Q R,, where 

Rm = R,+ (Ro--RN)IEz; (171 

(ii) for R < RN (use figure 2 ) :  stable for R > R,, where 

For R = R,, the layer is marginally stable. It should also be noted that there 
are alternate regions of synchronous response (solution has frequency w )  and 
subharmonic response (solution has frequency frw) depending on the location of 
the ‘operating point’ on the stability charts. Specifically, the first unstable region 
in figure 1 will give rise to synchronous response, while the second unstable 
region (for large q )  in figure 1 and the entire (large) unstable region in figure 2 
will produce subharmonic response. Finally, it should be mentioned that figures 1 
and 2 represent only limited, but most significant, portions of the overall sta- 
bility plot (cf. McLachlan, for example). 

4. Results and discussion 
The analysis was performed in the following manner: (i) The stability charts 

were used to obtain an ‘overall stability map ’ of the system corresponding to the 
crude, one-trial function approximation. (ii) A number of ‘spot checks’ were 
made by comparing specific results from (i) with those employing up to five 
trial functions. (iii) Finite amplitude (Le. non-linear) effects were studied, again 
first with only one trial function, and finally (iv) certain of these non-linear results 
were ‘confirmed’ by showing at  least qualitative agreement when compared to 
those obtained using five trial functions. 

4.1. Linear stability analysis 

(i) Qualitative results using one trial function. Figures 1 and 2 may be utilized 
t o  determine the critical Rayleigh number as a function of the shaking parameters, 
w and 6Fr (note that Pr depends on the fluid property K ) .  The critical Rayleigh 
number is defined, at fixed w, 6Fr, Pr, (a)  for R > RN, as that Rayleigh number 
above which the system is unstable, and (b)  for R < RN, as that Rayleigh number 
below which the system is unstable. Note that this definition, as usual, implies 
the existence of a critical, or ‘most dangerous’, wave-number. In order to obtain 
R, and aC, many curves such as figure 3 were constructed, each at  a different wave- 
number, the lowest such curve at a given w defining R, and a,. Each point on 
figure 3 was obtained from figure 1 (for fixed Pr and SFr) as follows: (a)  select 
a value of (,, ( b )  compute R, from (17), ( c )  compute &q = f (p)  PrR,SPr, ( d )  read 
214 - a from figure 1, and finally ( e )  compute the frequency from 

214 - a = ul(f (PI WRrn - RN)) 4, 
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The resulting curve shows the region of stability for the given wave-number. 
The interesting ‘neck’ in the stable region of figure 3, while indeed stable for the 
wave-number in question, ‘disappears’ whcn the stability to  all wave-numbers is 
examined. A similar procedure, employing figure 2, is used to determine R, and 
a, for the case of heating from above, where R < R,. Figures 4 and 5 show the 
resulting critical Rayleigh number R, and the associated critical wave-number 
a, as a function of w for Pr = 7 and SFr = 
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FICUHE 3. The marginally stable Rayleigh number at fixed a, Pr, and 83%. 

Figure 4, for a fluid layer heated from below, shows that gravity modulation 
significantly increases the stability limit of this system. The effect is small a t  
low frequencies, but becomes quite significant a t  higher frequency. The dis- 
continuity at w 1250 is caused by passing from the first unstable region to the 
second one in figure 1. As w is increased through this point, the following abrupt 
changes are predicted: (a)  R, changes from a rapidly increasing function of w 
to a slowly decreasing one, ( b )  the critical wave-number jumps from a small value 
(large roll cells) to a large one (its derivative with respect to w also changes sign), 
and ( c )  the system response (i.e. w and 8 )  changes from synchronous to sub- 
harmonic. As w is further increased, R, approaches a limit which is a function of 
Pr and SFr [R,(w --f co) g 6770 (7 /Pr)  (10-5/SFr)] but a., continues to increase. 
If SFr is decreased, the R, vs. w curve would shift to the right and the peak value 
of R, (as well as the asymptotic value) would increase. This also indicates that 
R, may become less than R, at large 6Fr and high frequency. Thus the stability 
limit of the fluid layer is most strongly increased a t  small shaking amplitude and 
large shaking frequency; there is ostensibly no upper limit on the Rayleigh 
number which can be stabilized in this manner. 

I n  figure 5 is shown a similar plot for a fluid layer heated from above. These 
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results, derived from the stability plot of figure 2,  show that gravity modulation 
can destabilize a statically stable system if the heating rate is sufficiently high. 
In this figure, there are no quantitative results for w < N 400 since the unstable 
regions from a plot such as figure 2 become very small and lRcl becomes very 
large. A reasonable conjecture would be that for low frequencies, it would be 
almost impossible to destabilize a fluid which is heated from above. The interesting 
behaviour again occurs at high frequency. For w > - 422, the layer exhibits 

Unstable 

I I I I I I I I 1 1 
200 400 600 800 1000 1200 1400 1600 1800 2000 

w 

FIGURE 4. Critical Rayleigh number and wave-number for 
R > RN, Pr = 7, SFr = ( N  = 1) .  

subharmonic response; as w + co, R, +- 8508 and a, --f 7.15 for this Pr,  SPr 
combination. If 83% is increased, the R,vs. w curves in figure 5 would shift down- 
ward and to the left, thus indicating that it is easier to destabilize the system if the 
shaking amplitude is large. Again, this analysis predicts that any negative 
Rayleigh number (such that R < RN)  can be destabilized by gravity modulation. 

Finally, it is also predicted from figure I ,  for RN < R < R,, that the fluid 
layer may be stable or unstable, depending on the frequency and amplitude of 
modulation. To summarize, any Rayleigh number other than zero can exhibit 
stability or instability for the proper combinations of 6 and w .  

It may be instructive a t  this point to relate the dimensionless parameters to 
those for some ‘real ’ experiment. The following frequencies (in cyclesfsec) 
correspond to w = 1000: (A) for h = 1 em; 250for hydrogen gas, 35 for air, 7.4 
for liquid mercury, 0.227 for water, and 0-16 for a typical silicone oil. (B)  For 
h = 0.1 cm, increase the above values by a factor of 100. The ‘ Froude number ), 
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Fr = ~ 2 / g h 3  for the above liquids is: ( A )  For h = 1 cm; 250 x for hydrogen, 
5 x 10-5forair,0.22 x 10-5formercury,0~00021 x 10-5forwater,and0~0001 x 
for silicone oil. (B)  for h = 0.1 cm, increase the above values by a factor of 1000. 
Thus, for example, a 1 mm layer of water (Pr = 7)  will have SFr = 10-5 if 
6 = 4.8; also, at w = 1000, the frequency is 22.7 cycles per second and the peak 
acceleration is B = 6 F r d  = log’s. 

P. M .  Gresho and R. L. Sani 
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FIGURE 5. Critical Rayleigh number and wave-number for R < RN, 
Pr = 7, SFr = lop6 (N = 1). 

(ii) The effect of additional trial functions. Many runs were made using the 
computer program in order t o  check ( a )  the accuracy of the graphical analysis via 
the stability charts (i.e. N = 1) and (b)  the adequacy of the approximation based 
on trial function ( N  = 3,4, or 5). In general it was found that the error introduced 
by the graphical analysis was of the same order of magnitude (2-10 % or so) as 
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that when comparing N = 5 to N = 1. Also, in all cases examined, the difference 
between N = 4 and N = 5 was quite small; thus N = 5 was taken as an ‘upper 
limit’. (For N = 5, R, = 1710.1 for a: = 3.117 compared to the exact value of 
R, = 1707.8). As an example let us consider two points on figure 4;  R, 3400 
at w = 1100 and R, z 10,300 at w = 1800 were obtained graphically. These two 
points were checked with the computer program using N = 1 and N = 5 ;  all 
parameters from figure 4 were fixed except the Rayleigh number. The results 
are as follows: at  w = 1100, the critical Rayleigh number is - 3090 with N = 1, 
and N 3120 with N = 5 ;  at w = 1800, R, is - 10,500 with N = 1, and - 10,000 
with N = 5 .  Here the marginal state is obtained by plotting K ( t )  or Cl(t) vs. time 
on semi-logarithmic paper to obtain the growth rate for a given €2; a second plot 
of growth rate vs. R yields the marginal state at zero growth rate. The very close 
agreement in the first case between N = 1 and N = 5 is probably somewhat fortu- 
itous; these checks do instill a reasonable degree of confidence in the approximate, 
graphical analysis, however, 

4.2. Finite amplitude results 

Most non-linear results were also obtained using one trial function, with frequent 
‘spot checks’ using five trial functions; again, the simplest description of the 
system proved to be qualitatively quite reliable. For this approximation, the 
momentum equation is one given by (12), the corresponding temperature per- 
turbation is given by (1  1 )  with 9 V .  T added to the right side; finally, the ampli- 
tude coefficient of the correction to the horizontal mean temperature is given by 

- 

T = -4n2T( t ) - fV ( t ) .T ( t ) .  (19) 

Figure 6 shows some typical, long time, synchronous results with heating from 
below. Both sets of curves are for Pr = 7 and w = 800; the solid curves are 
for R = 104, a: = 3.44 and e = 5.7 (SFr = 8-9 x and the dashed curves 
correspond to R = 3000, OL = 2-82 and e = 6.4 (6Fr = lop5). For the first case, 
the marginally stable Rayleigh numbers are - 2240 and N 12,300, the higher 
value of R, corresponding to the ‘neck’ region of figure 3. The corresponding 
steady solution for w = 0 (‘no shake’ solution) is V = 27.1, 1” = - 19.7, and 

= 21.6 ( N u  = 2-36). For the second case, the marginally stable Rayleigh 
numbers are - 2260 and 10,300, and the ‘no shake’ solution is V = 9.26, 
T = - 14.9, and T = 5-58 ( N u  = 1.64). The results displayed in figure 6 indicate 
that, to this order of approximation, the velocity is more strongly affected by 
the modulation than is the temperature. It is also seen that the velocity is of 
opposite sign for a small part of the cycle, indicating that the roll cells (i.e. the 
particle paths along the streamlines) actually reverse direction, but still display 
a net rotation in one direction. Even under conditions of marginal stability 
(e.g. by increasing 6 for the first case, and decreasing S for the second case, to 
reach the nearest stable region) the roll cells would rotate farther in one direction 
than the other; mathematically this is explained by the occurrence of ‘constant 
terms ’ in some of the Mathieu functions. The physical explanation is less straight- 
forward: the only way that oscillations can remove energy from this (syn- 
chronous) system (i.e. inverted pendulum) is if there exists a permanent ‘offset’. 
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For example, in the pendulum system, if 8, is the constant pendulum offset 
angle, the net energy transferred to support is approximately proportional to 
sin 8,. 

-40 

Number of plate cycles 

FIGURE 6. Amplitude cocficients ( N  = 1) showing synchronous response with heating 
from below: Pr = 7 ,  o = 800. - , R = 104, a = 3.44, = 5.7; --- , R = 3000, 
a = 2.82, E = 6.4. 

In  figure 7 is shown a similar result except that 6 ,  w are adjusted to give sub- 
harmonic response. For this case, R = lo4, Pr = 7, a = 6.66, o = 1332 (the fluid 
responds at a frequency of 666) and E = 21.2 (83% The steady 
solution for no modulation is V = 21.9, T = - 16.0, T = 14.2 (Nu = 1.89) and 
the marginally stable Rayleigh number with modulation is - 9500. In  this case, 
the oscillation is seen to  have even more dramatic effects, the most significant of 
which is that there is no net flow: the fluid particles move the same distance in 
each direction, completing one cycle each time the plates complete two cycles. 
Again, the shapes of the curves are not unlike Mathieu functions; here the solu- 
tion would be comprised of Mathieu-type functions, which have no ‘constant 
term’, a t  least for V ( t )  and T(t). Note, however, that the heat flux temperature 
coefficient T(t)  still contains a constant part, and that it responds a t  the higher, 
forcing frequency. It is also noteworthy that the heat flux is generally much less 
than the ‘no-shake’ value and ‘peaks’ as w goes through zero for all cases ex- 
hibiting subharmonic response. Finally, let us briefly compare these results to 
those obtained using more trial functions. First, the qualitative features of the 

1.2 x 
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solution are identica 1, with the higher-order terms tending (in all cases studied) 
to increase the fluid velocity. With one trial function, the following maximum 
values were obtained: qr 64.5, T, 2 8-7, p, g 1.24 (Nu varies from 1.03 to 
1.08). With two trial functions for T$ and Ti,  but one for Ti, we obtain: V, r 112, 
T, g 14, and T ,  3.6 (Nu varies from 1-10 to 1.23). Finally with five trial func- 
tions for &, Ti and four for p$ we obtain: V, z 132, T, 16, T I  z 4-4 (Nu varies 
from 1.15 to 1.21). Also, for this last case, V, has a maximum value of N 26, 
V, z 8, V, r 2, and & r 0.8; all of these higher-order velocity coefficients are 
approximately in phase with the principal coefficient V, . 

- 

- 

*O r 

-80 L 

Number of plate cycles 

FIGURE 7. Amplitude coefficients ( N  = 1) showing subharmonic response with heating 
from below: R = lo4, Pr = 7 ,  OL = 6.66, o = 1332, E = 21.2. 

A fluid layer heated from above will generally exhibit subharmonic response if 
it is destabilized by shaking and, in fact, the response will be qualitatively similar 
to that just discussed. Figure 8 shows the long-time response for R = - 14,985, 
Pr = 7, a = 4.97, w = 750ands = 4.82 (6Fr g 8.6 x 10V). Under these conditions 
the marginally stable Rayleigh number is N - 14230 and the solution with no 
modulation is, of course, zero. 

Most of the non-linear ‘exploratory’ calculations were performed with an 
analogue computer using the one-term approximation. This allowed a rapid 
search for ‘interesting’ behaviour, which could later be checked by the digital 
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computer program using more trial functions. Another, very practical reason for 
relying on the analogue computer is that the non-linear interactions frequently 
cause the system to display very long term transient effects due to the initial 
conditions (and especially to the initial lack of proper phasing, in time, of the 
amplitude coefficients); typically 50-200 ‘plate cycles ’ are required to achieve 
a relatively steady, oscillatory solution (if one exists). These transient effects 

Number of plate cycles 

FIGURE 8. Amplitude coefficients ( N  = 1) showing subharmonic responsc with heating 
from above: R = - 14,985, Pr = 7, a = 4-97, w = 750, E = 4.82. 

can be quite expensive when using the digital computer with several trial func- 
tions. Although the results presented here are among the most common ‘solution 
types’, there were many other interesting responses; e.g. a t  R = 20,000, Pr = 7, 
a = 3.44, w = 800 and E =4.04, the response was similar to that in figure 6 
except that V(t ) ,  and to a lesser extent T(t)  and p(t) ,  were apparently modulated 
by a very low frequency wave (-Q of the forcing frequency). Some of these 
unusual wave forms will be published separately (Gresho). 

We will, however, present one example of the most unusual type of response 
encountered; the so-called ‘relaxation  oscillation^. The data for figure 9 are 
identical to those for the first case of figure 6 except that the amplitude 6 is a 
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factor of four larger (6Fr = 3-56 x thus raising the ordinate (Qq) in figure 1 
well into the second unstable region (R, 5300). This relaxation-type of oscilla- 
tion was observed many times, for both R > 0 and R < 0 (always in the sub- 
harmonic region at large acceleration B )  and was never found to be exactly periodic 

400 
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- 300 

- 400 

30 f 

20 - r 

Number of plate cycles 

FIGURE 9. Amplitude coefficients ( N  = 1) showing relaxation oscillations; 
R = lo4, Pr = 7, ct = 3-44, w = 800, E = 22.8. 

although the number of ‘plate cycles’ between the explosive bursts ( N 10 in 
figure 9) was relatively consistent for a given run. (It is also noteworthy that 
the occurrence of (periodic) relaxation oscillations in a heated fluid layer with no 
shaking has been predicted by Busse 1967 in the case of a fluid layer supported 
by a conduction layer in which is maintained a given rate of heat production.) 

A crude explanation of this phenomenon is offered here: When finite amplitude 
effects are small, the system is predicted to be highly unstable according to 
linear theory; hence the growth rate of the perturbations is very large and V(t)  
and T(t)  grow rapidly as predicted by linear theory. Since T(t), the distortion of 
the horizontal temperature from a linear profile, grows according to the product 
of V ( t )  and T ( t ) ,  the mean temperature profile will be little affected until V ( t )  
and T(t)  become fairly large; but, since they do so in a relatively short time span, 
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the effect on T(t)  is almost one of a sudden ‘impulse,’ thus quickly causing ?(t) 
to become large and positive (since V ( t )  and T(t)  are normally of opposite sign). 
Hence T(t)  grows rapidly until thermal diffusion (the term - 47r2T(t) in (19)) 

again becomes significant and a balance is more or less restored: T(t)  goes to zero 
and finally changes sign. At this point we digress to reconsider the Mathieu 
parameters a and q, with non-linear interactions included. The result is (a) the 
ordinate, &J, must be multiplied by the factor { 1 - ;zF/JR) and (5) the abscissa, 
2/J -a, must be multiplied by the factor [(R - R,)/(R - R, - :7r JRF)]*. Since 
T > 0, the non-linear interactions act to reduce the effective Rayleigh number; 
this causes the original point on figure 1 to  move downward and to  the right and 
possibly well into the shaded stable region. Although this reasoning is rigorous 
only if T(t)  is constant, it nevertheless seems to apply to these relaxation oscilla- 
tions where T(t)  decays slowly. Thus it is postulated that when F ( t )  obtains some 
critical magnitude, the point on the stability chart (figure 1) movesinto the stable 
region, causing V(t) and T(t )  to decay rather quickly toward zero. Soon V ( t )  . T(t)  
becomes small compared to 47r2T and T is then acting as a disturbed, conduction 
temperature profile which slowly decays, or relaxes, as e-4n2t, convection effects 
being negligible. As T(t)  decays, however, the ‘point of reckoning’ on the sta- 
bility chart gradually moves back upward and to  the left. Eventually T(t)  will 
be small enough so that the system again moves into the unstable region and the 
cycle begins anew. 

This relaxation instability appears to  be the most significant test of the 
‘credibility’ of the simple model and was accordingly tested with five trial 
functions (four in Ti )  using the digital computer; the results, shown in figure 10 
for some of the amplitude coefficients, again confirm the predictions of the simple 
model. The main differences between one and five trial functions for this case are 
as follows: (a )  The peak velocity is larger than predicted with one trial function. 
(a) The heat transfer rate is also larger when more trial functions are employed: 
the maximum Nusselt number is - 3.7 with N = 1 and - 9.7 with N = 5. (c) The 
higher-order temperature coefficients are more significant than those for velocity. 
Finally, (d )  there are only about seven plate cycles between ‘bursts’ with five 
trial functions, compared to about ten cycles with one trial function. 

4-3. Prozen-time a ~ ~ r o x i ~ n a ~ ~ o ~ ~  for low frequency 

For very low frequency (w < N l), a ‘frozen-time’ model may be invoked on the 
basis that the growth rate of the perturbations is large compared to the rate 
of change of ‘gravity’ due to the modulation. The exponential growth rate factor 
with no modulation is then assumed to apply ‘instantaneously’ as follows (for 

(20) 
heating from below), cT=wn[(-)i-l], R-R, 

RO -Riv 
where R = R,(1 +ssinwt) is considered here to be a slowly varying, time- 
dependent Rayleigh number: also wK - f ( P )  Pr(Ro- RN).  On this basis, the cri- 
terion for marginal stability must specify that there be no net growth or decay 
over one cycle; i.e. 

c d t  = 0. 
Io2n‘u 
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Letting r = at, the criterion for marginal stability becomes 

80 1 

where k = (eRTn/Rm- RN)  < 1. Using the first three terms of the binomial ex- 

R,-R, * pansion yields - (1-  (-) )’, for E < 1. 
RTn R, -R,  1.1 = (23) 

50 - 
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Number of plate cycles 

FIGURE 10. Amplitude coefficients (N = 5 for Vi, Ti;  N = 4 for pi) showingrelaxation 
oscillation with more trial functions ; the parameter values are identical to those in figure 9. 

Thus, for low frequency, the stability is defined not independently by 6 and w ,  
but by the acceleration, E = 8Fra2. The above relation was also obtained using 
asymptotic values (w  -+ 0) from the Mathieu stability chart. 

Also, for w < 1, the above model applies quite well to the heated fluid layer in 
which one surface temperature is modulated sinusoidally about a mean value 
(cf. Venezian). The argument here is that, for very low frequency, the conduction 

F L M  40 51 
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temperature profile can respond quickly enough so that there always exists a 
slowly varying, essentially linear temperature profile. In  this case, e is identified 
with the amplitude of the modulation, measured in terms of the nominal AT, and 
R,is thus independent of w .  The frozen-time model may also be used to determine 
the effect of simultaneous oscillations in gravity and surface temperature. The 
results are: (a )  for identical frequencies, 

and ( b )  for different frequencies, 

From this it is seen that the effects B, and eg are simply additive when the fre- 
quencies are identical (e.g. if eg + e, = 0, the effects cancel and (24) gives R, = B,,). 
For different frequencies however, the squares are additive and thus there is 
always enhancement of stability. Finally, it should be noted that one also obtains 
(23)  for the case of free-free boundaries (with the corresponding definitions of R, 
and R,, viz. 

For €2 =g 8 ,  (23 )  can be inverted to give 
Pr 

2 ( ~ r  + 1,” 
R,-R, g Ro.8 

This result is identical to the w -+ 0 result obtained by Venezian using a perturba- 
tion analysis in B. It is now seen to apply to temperature or gravity modulation 
(or both). 

From the viewpoint of non-linear theory (or from an observational point of 
view in a laboratory), these low frequency results must be re-interpreted; for 
example, if R, = 5000 and B = 1,  it is clear (for w + 0) that the system may be 
regarded as unstable during - 71 yo of the cycle (when R > 1825) and stable 
during the remaining 29 %, thus indicating that CJ < 0 has a ‘stronger influence ’ 
than the CJ > 0 part of the cycle in (21 ) .  Now, in a non-linear experiment, given 
an arbitrary set of initial conditions at R,, e, one would find that the perturbations 
decay very slowly and would approach zcro as t --f 00 (the usual result from non- 
linear theory). This effect would probably not be observed in a laboratory experi- 
ment, however, owing to these ‘ever-present, small perturbations’, i.e.this system 
cannot be adequately described for all time by a unique set of initial conditions. 
Hence, in a laboratory, one would most likely observe flow during part of the 
cycle and no flow during the remainder of the cycle.Thus, for very low frequency 
oscillations, the usual mathematical description of the system (either linear or 
non-linear) may well generate spurious results in the sense of describing physical 
observations in the laboratory. 
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4.4. Streamlines and particle paths 

It is of some interest to examine the details of the flow within the roll cells in order 
to compare the fluid motion to the motion of the plates. This will again be done 
approximately, using one trial function; this approximation should be reason- 
ably good since &(t) is quite dominant. Accordingly, the stream function for a 
roll cell is given by $(x, z ,  t )  = ( l / a )  v ( t )  sinaxsinznz; 

(ah ) .  x 

FIGURE 11. Streamlines and particle paths in a roll cell; - curve is for the data of 
figure 6 (first case) and --- curve for the data of figure 8. 

the velocity components are u = - a@/&, w = a$/ax. Since u and w contain the 
same time-dependent factor V(t ) ,  the particle paths coincide with the streamlines 
(Aris 1962). The streamlines are obtained from sinaxsin2m = c (c < 1) and are 
shownin figure 11 for several values of c. The motion of a fluid particle is obtained 
from dx/u = dzlw = dt and the streamline equation, yielding, for our trial func- 

The integral over t is performed numerically as V(t )  is computed, and the integral 
over 5 can be obtained in terms of incomplete elliptic integrals of the first kind. 

Two cases will be presented here; the first is for the data of figure 6 (first case) 
and the second for the data of figure 8. For the former, the time integral of V(t)  dt 
over one plate cycle 27r/w is 0.20. In  figure 11, the curves labelled (I) correspond 
to one plate cycle and those labelled (11) are for two plate cycles. The solid curves 

51-2 
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were located along the line z = 0.5 a t  t = 0, and the dashed curves were located a t  
ax/n = 0.5 a t  t = 0; these curves represent the motion of the fluid particles, 
and may be visualized as if a dye streak were placed along x = 0.5 and x = 0*5n/a 
a t  t = 0. For this case of synchronous response, it is seen that the fluid particles 
traverse a fairly small portion of the total closed trajectory during one plate 
cycle, but that there is a net flow in one direction along the streamlines. The 
second example is one of subharmonic response a t  R = - 14,985; for this case, 
the integral of V(t)dt over one plate cycle is N 0.39, and thus corresponds quite 
closely to the curves labelled (11) in figure 11. The key difference here is that there 
is no net flow (i.e. the integral of V(t )  dt over the next plate cycle is N 0.39), and 
the dye streaks would return to  their original locations at the end of two plate 
cycles. This osciIlatory behaviour would also apply to  a fluid heated from below, 
which is responding a t  half the forcing frequency, such as the case discussed in 
figure 7. While these oscillations seem fairly reasonable for a fluid layer heated 
from above (denser fluid below), they are much less obvious for the fluid heated 
from below, but then it is also far from obvious that an inverted pendulum can 
be stabilized by shaking. 

P. M .  Gresho and R. L. Suni 

5. Conclusions 
(i) Gravity modulation can significantly affect the stability limits of a heated 

fluid layer. Specifically, (a )  any positive 1Zayleigh number (heating from below) 
can be stabilized in some region of the 6-w plane, with larger Raylcigh numbers 
being stabilized at high frequency and small amplitude. ( b )  Any negative Ray- 
leigh number (heating from above) can be destabilized for some range of 6 and w ,  
with high frequency and large amplitude being the most destabilizing. 

(ii) With heating from below, there may occur two distinct types of flow 
patterns: (a )  At low to moderate frequency, the response will be synchronous 
with the forcing frequency, and there will be net fluid motion along the stream- 
lines, although there will be flow reversal during part of the cycle. The Nusselt 
number will usually be less than that with no modulation, since the modulation is 
a stabilizing influence. ( b )  At high frequency the response will be subharmonic, 
there will be no net flow along the streamlines, and the Nusselt number will be 
significantly lower than that with no modulation. 

(iii) With heating from above, the flow pattern will be predominantly sub- 
harmonic with no net flow and rather low Nusselt number. There may exist a 
small range of intermediate frequency for which the flow response will be syn- 
chronous. 

(iv) The Mathieu stability charts, which correspond to  a one trial-function 
approximation, are quite useful in ascertaining the approximate stability limits 
with gravity modulation. One trial function also gives a reasonably good repre- 
sentation of finite-amplitude effects. 
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Appendix 
The coefficients in the Galerkin equations (8)-(10) are defined as follows, 

lettingf,(z), gi(z) ,  and h,(z) represent the ith trial functions for the vertical velo- 
city, the temperature perturbation, and the mean horizontal temperature cor- 
rection, respectively: 

dz 

For the trial functions used here we have fi = sin nz sin (2 i  - 1)  TZ,  

g, = sin (2 i  - 1 ) m, and hi = sin 2inx; 

letting Fi = 2 i -  1 yields 
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